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fbSTRhCT 

The numerical description of the state of matter which is in the presence of a radiation 
field, and which scatters, absorbs, and emits that radiation is far from straightforward. 
Three general methods have been applied to various problems: invariant imbedding, 
Monte Carlo, and direct discretization of the relevant integrodifferential equations. At 
the moment the last method seems to possess the greatest versatility and it also has 
had the most success. A special discrete, or finite difference method is discussed in this 
paper. We first present a set of requirements such as conservation and correct asymptotic 
behavior, which, although quite reasonable, cannot be satisfied by a finite difference 
method on a fixed word length machine. We then construct discrete equations which 
satisfy a set of relaxed requirements in an ideal situation, namely, without scattering 
and assuming local thermodynamic equilibrium. We also give some numerical results. 

1. The special radiation transport problem we will consider concerns a 
material of unit density, at rest (all hydrodynamic effects ignored), which absorbs 
and emits but does not scatter radiation. The equation expressing conservation of 
photons is 

1 ar 
--+i-vI=s-d 
c af 

(12) 

where I = 1(x, t, w, v) is the specific photon intensity at space positicm x = 
(x1 , x, , x,), time t, direction o and frequency 71. w is a unit vector or a point on the 
surface of the unit sphere, V is the spatial gradient operator, o = o(x? t, v) is the 
absorption coefficient. S is a source which we restrict to be CJ times the 
function 

1 Supported by NSF Contract No. GP-7641. 
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Here, T = T(x, t) is the temperature of the material. Note also that 0 in general 
depends on T as well as explicitly on x and t. 

An additional equation is needed to determine the temperature T. This equation 
expresses the conservation of total energy in the system. Putting 

ER = c-l 
SJ‘ IldwIdv 

EM = EM(T) = Material energy density 

we have 

REM ---= - -$$+divF8) 
at t (14 

or equivalently 

aEw 
-- = -1; u [47rB(T, v) - 111 dw I] dv 

at (1.3) 

The equality of the right sides of the above can be seen by integrating (1.1). 
A complete determination of I and T requires initial and boundary conditions. 

We assume that 1(x, 0, o, v) and T(x, 0) are given initially and 1(x, t, w, v) is given 
at the boundaries for all incoming directions. 

2. As we have seen in the previous section 

(2.1) 

This expresses the local conservation of radiant energy. The left side of (2.1) is the 
change in radiant energy in an infinitesimal space-time volume element, the right 
side is the change due to absorption and emission. Equations (1.2) and (1.3) say 
we have local thermodynamic equilibrium, that is, the change in radiant energy is 
exactly balanced by the change in material energy at each point. Theoretic, 
pragmatic, and aesthetic considerations lead us to require that in some sense both 
of the above conservation principles should have analogues in the finite difference 
scheme. This means that whatever discrete set-up is used for (1. l), summation over 
direction and frequency should produce an equation similiar in form to (2.1), that 
is, one expressing a local conservation of radiant energy; and the numerical value of 
either side of (2.1) should balance the numerical change in material energy density 
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by which the temperature is computed. Thus, conservation is one of the require- 
ments imposed on the difference scheme. 

The second requirement is not so evident but it is important. 
behavior of the numerical solution for the limiting cases of very large or very srna.1 

mpared to the dimensions of the system). In the former ease the r~dia~i~~ 
ion approximation provides an accurate, efficient method of solution. We 

cannot expect our difference scheme to be as efficient, but we do have the right to 
it to be as accurate. This can only happen if our d~~ere~~e equations for large 
come essentially the same difference equations used in the division approxima- 

tion. A similar statement applies to the other limiting case. 
The remaining requirements are positivity, accuracy, and stability. Since the 

intensity and temperature are positive in fact, it would be nice if the d~~~r~~~e 
scheme could guarantee a positive solution. Accuracy refers %o the ~~~~~a~~~~ 
error of the scheme, which we would like to be of high order. Finally, since a 
stability condition is likely to involve the speed of light in an unpleasant way, we 
would prefer to have an unconditionally stable scheme 

NO finite difference scheme on a machine with a finite word length can satisfy all 
the above conditions. First, the limiting behavior and conservation ~onditj~ns are 
i~~o~siste~t~ If we consider a thick (large 0) slab, the diffusion a~p~~xim~t~~~ 

so that the right side of (2.1) is zero but the left is not. What actual 
computer is that because B is close to 1, a@ - 1) is all noise. In 
be a constant depending on the direction plus a term of order (T 
computation of divFR by differences will result in nothing but noise whereas the 
right side of (2.1) will be correct. 

Second, we cannot have guaranteed positive intensities and also a high order of 
truncation error. Only a positive scheme, that is to say one in which new values are 
a positive linear combination of old values, is sure to have a positive solution given 
positive initial data. P. D. Lax [4] has shown that except in special not ~~teres~i~g 
cases positive schemes necessarily are the least accurate. We can, however, remove 
one glaring source of negative intensities, the term 01, in such a way as to maintain 
second order accuracy (corresponding to centered differences). In doing this the 
positivity of certain average intensities will be conserved. It is only when these 
averages are solved for the intensities at mesh points that anything can go negative. 
We call such a situation almost positive. 

Our difference scheme will be locally and globally conservative, asyrnpto~~~ 
correct if computed with infinitely many significant figures, almost positive, a 
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unconditionally stable. It is reasonably efficient as far as computer time is con- 
cerned, but it does require the preparation and storage of multi-dimensional tables. 

3. The difference scheme is obtained by being careful about conservation 
in the left side of (1. l), and by being careful about asymptotic behavior in the right 
side, an idea first used by I. P. Grant [3]. 

Let 

Conservative difference approximations to the operator L have been obtained by 
Carlson and Lathrop [l] for arbitrary geometries. We will restrict our discussion to 
the slab, for which 

and the sphere 

The parameter p varies from -1 to 1, and 

To obtain discrete operators E corresponding to the operators L, Carlson and 
Lathrop first introduce the following notation: for a given net of points (Y$ , t, , pm) 
and for any function f(ri , t, , ,u,) let 

fi = fki, ts+1/2 7 Pm> 

fs = f@i+1,2 7 ts 3 Pm> 

f m+112 = f(ri+1/2, ts+i/2, t-%+112) 

This avoids a proliferation of indices, but it does impose a burden on the reader. 
The Carlson and Lathrop difference operators are, for the slab, 

(3.1) 
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and for the sphere, 

where 

The plm are the direction cosines of the photon paths and are chosen s~rn~etr~~ 
about the origin. The weights w, are taken to satisfy 

c pmwm = cw 
c /-4n2wn = % 

The ~m+1/2 are defined as follows 

Since pm < P,+~ , and p1 is the most negative p, the am+1le are all n~nnegati~e~ 
In the next section we will introduce a suitable ap~ro~~mati~n for S - 01, so 

that the difference equations become 

LI = s - oH 

We have more unknowns than equations, so additional conditions 
imposed. This can be done in two ways. The quantities Ii ) 1, , 1,,,, re~~~se~~ 
average intensities on the faces r = ri ) t = t, , p = pmipiz, respectively, of an 
elementary mesh cell. If we introduce the quantities 

and define 

4 = 4f.1i,s,m+l12 + Ii,s+l,m+l/2 + &,s,m-Ii2 4 Pi,s+l,m-l/J (3.5) 

and so on, then there are just enough equations to determine all the 1~,s+X.~il,2 p 
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given ~x~+II~ and the boundary conditions. If we adopt this procedure, it follows 
that 

li -t- Ll = 1, + Is,, = &2+1/2 + L-1/2 

Alternatively, we may simply impose (3.6) as an extra set of conditions. 
The operators E are conservative, for if we set 

(3.6) 

E*(v) = G C Isw, 
Tn 

F~(v) = 2~ C Iipmwm 
112 

then for the sphere, 

27l c EIwm = 
E s+1 - Es At + + (A,+$,,, - ATi) 

?n z 

Therefore, 

2a J; ( C ZIwm) dv 
?n 

is a conservative difference approximation for 

a& T + divFR 

Conservation can be obtained in other ways, but this method has a property 
which is crucial for us. It follows from (3.4) that (for the sphere) if we set 

then 

(3.7) 

(3.8) 

As a result of this we have 

LI = y(Ip - IQ, (3.9) 
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where, Zp and Zo are averages of the Z’s (linear combinations with ~~~~~eg~~~v~ 
coefficients adding to one). For example, if p,% > 0, 

A similar statement holds, trivially, for the slab. We will exploit (3.9) in 
following section. 

In the absence of scattering equation (1.1) can be integrated by intro- 
ducing tie characteristic parameter S, where d/cl’s = (l/c)(a/at) + w * v, so hat 

Z(s) = 40) exp -I- eXP -jf, 67 d$” 3 62s 

Let Q be some point in (r, p, t) space. Put s(Q) = 0 and easwe off along 
characteristic through Q a positive length ~4s. Then 

We now replace 

by 

s - oz = o(B - 

1 
s 
as 

z, o(B - Z) ds 
and in addition we put 

so that from 

As = y-1 

Z(0) = z, 

we get 

n= -$-~As*(B - 0 

(4.2j 
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Equation (4.3) together with either (3.5) or (3.6) constitutes the basic difference 
scheme. The related problems of frequency discretization and the approximation of 
the integrals which appear in (4.3) are discussed in the next section. 

The equations (4.2) are what enabled us to tie together the approximations of the 
left and right sides of (1.1). The motivation for them is given in Figure 4.1. The line 
C is the characteristic corresponding to p = y, > 0 which passes through the 
center of the mesh cell, for slab geometry. In this case the length of the segment 
PQ is y-l. 

ri IS ‘i+l 

FIG. 4.1 

If in addition we define l(P) by linear interpolation on I,,, , Ii+l , and if we define 
1(Q) correspondingly, then it turns out that 

I(P) = I, 

I(Q) = Ia 

Thus, for the slab the equations (4.2) are exact for a suitable choice of Q. In the 
sphere these relations are only approximately satisfied, but with a degree of accu- 
racy consistent with the overall accuracy of the scheme. 

5. The integrals in the difference scheme are evaluated by assuming the 
following approximate form G and B: 

a(s) = OL ’ 
i 

0 < s < As/2 
uR 3 As/2<s<As 

B(s) = 12 ; zR$ - As), 
0 < s < As/2 
As/2 d s < As 

We then write 

s 
AS 

0 
rrB exp [-!I’ 0 dsr] ~ls = jISla g&s) exp[--oL(As - s)] ds 

+ L 
uRB(s) exp[-c+(As - s)] ds 
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first term above is not correct, but the correct expression would cause the 
i defined later in this section to depend on two values o 

just one. That complication would make this method ~rn~~a~t~~a~. 

= BR [I- exp (-Q +!f-j] 

XP (-0~ $1 - exp(-crL As)] 

(5.1) 

At this point we discretize the continuous frequency parameter 1~. 
this is to introduce discrete values vg , 

0 = v() < v, < **’ < VG 

Ig zz j-vg+l I dy 

vg 

From (4.3) we obtain 

The easiest thing to assume here is that I(v) is constant in the interval [vQ 9 v~+& 
and I(v) = 8, v > vG . Then 

I# = IQQ(v,+l - lp i:exp [-jI’uds] dv + 

No further approximations with respect to frequency ade sin 
tions in (5.1) can be performed using (5.2) once the T and 
fied. We first note that D (meaning DL or DR) represents dB/&* Then 

dB dT aB 
D====- 
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In order to have the equations be correct in the thick limit we replace dT/ds by 

jj - 1 dT4 
4T3 ds 

Now, let 

q. = $ B(T) [I - exp (--o(T) $)] dv 

41=S~[~exp(-~~)-0-l(I-exp(--n~))]dv 

q2 = /B [exp (-g$-) - exp(-cds)] dv 

q3 = 1% [* exp (-g q) - (T--I [exp (-g %) - exp(-a As)]] dv 

q4 = & e-(ldsdv s 

We now make the correspondence 

Pt,R 

Q*L 

in (5.1). Let qk(P), k = 0, 1,2, 3 be the functions qr “evaluated” at P, and let 
q4(P, Q) be q4 “evaluated” at the cell center. These quantities are not well defined 
at this time, since we do not know how to associate a temperature T with P. Just 
how these evaluations are to be made will be specified in the next section. The 
difference equations become 

Ipg = qdp, Q> IQ” + qo(P) + &4P> + qdQ) + %q,(Q> 

= arQg + /%(p> + P,(Q) 

together with (3.5) or (3.6). The energy balance equation becomes 

(5.3) 

(5.4) 

If we subtract IQ”  from both sides of (5.3) we see that, module the various approxi- 
mating assumptions that have been made, ,:/ 

(5.5) 
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We have already seen that the left side of (5.5) well represents the left si 
It is clear that the right side of (5.5) also represents the right side of 
our scheme satisfies the first conservation principle. By (5.4) it also 
second. 

The difference scheme is almost positive in the sense that if is positive, then so 
will be IPQ. The quantities Ii”, ISg, l&I,2 obtained from ( ) and (3.6) could 
be negative if there is too much variation in 19 from one mesh pomt TV t 
that is if the mesh is too coarse. 

The accuracy and stability are difficult to assess ~igo~ons~y because of the 
~~rn~~ex~t~ and nonlinearity of the equations. The 
the frequency dependence of I have been treated 
derivatives appearing in (‘I .I) have been replaced by centere 
~~~o~dit~~~a~ly stable way. This type of differencing has been discussed by the 
author in two previous publications, [SJ, and 161. 

. To determine the asymptotic behavior of the difference 
consider first a thick sphere (or slab). We define this to mean that all terms ~~v~~~?~~ 

can be neglected. Then from (5.3), 

JPg = q,(P) + Bp&(P) 
where now 

LetSstand for any one of the functions /3x , ,L$ . 
Let P,, pi, pm+1j2 be the (r, t, EL) points corresponding to 1, , I, ) Immtl18 9 and 

let pLtllt = 02 y t, , h+d 
Now Ipg is defined as a linear combination of the 19 at certain mesh points, for 

example, 

e define f(P) in (5.3) as the same linear combination. 
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We impose the auxiliary conditions (3.6) onf(P& etc., by introducing quantities 
fu%n+,,,) in such a way that 

f (Ps+J = arf ~pc%+m) + f VzIt+m) + f ~e2-,,,) + f(P::~,m--l,~)l 

f(P,+J = ~[fK:,l,?w,) + f w z+m+m) + f(P%n-~2) + f (P~+on-m)1 (6.2) 
f (Pm+1/2) = B[f(PZm+1/2) + f (p~+l,m+l/z> + f v%L~+u,> + f (Pis,m+l,2>1 

We now define the functions f (PS z,m+1,2). Note first that ds is here a fixed function 
of (P, Q), that is, it is considered to be independent of (Y, t, CL). The functions f 
still depend explicitly on (Y, t, p). For example, B depends on (Y, t, ,u). Now, we 
also fix those parameters which identify the matter in the cell (P, Q). 

In defining the f(P&Sl,Z) we assume that T is given at half-integer space points 
and integer times, T = Tf+I,p . We let 

Ti” = KG+,,, + T;-l/g) 

The definition off (Pism+& is as follows: 

(a): Replace T by Tis in B(T), BB/aT, a(T) 
(b): Replace B by either 

(6.3) 

or 

i(Tis)-3 [ (Tis)* - (T;-1)4 
cAt 

+ ru,,l,2 G?+1/2)* - G%,2)* 

A?- 1 (6.4) 

In (6.4) we have used 

In (6.3) we have dropped (l/c)(aT*/at), which will lead to the usual diffusion approx- 
imation. 

Although it doesn’t appear in the thick limit we must also define q4(P, Q). If we 
are integrating across the cell from ri to ri+l, t, to t,+l , then 

It now follows by induction that 
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There is no loss of generality in taking just one frequency interval. S 
g, and using (6.3) we have, with a = 8+k4/15c3h3, 

and 

where r3 is the Rosseland mean opacity 

There is no need to write N,.+I,z , for those terms cancel out of the energy 
equation We thus have a discretization of the diffusion approximation, 

If we define 

the reader can see that the energy balance equation becomes an irn~~i~it 
equation for the radiation diffusion equation. 

The thin limit can be discussed in the case that ~(i~corn~~~) = 
aries. Then for small U, 

I# = O(u) 

rence 

and therefore also ISg, &g, and IL,,,, are O(O). Then 

2v vAtCC(EIg)w,m = 2r vAt$f 
mc? 
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The first term on the left has the form 4rrV At times an average oB, so the energy 
balance is 

- J % dt dV = 47~ VAt(cB),,,rage + O(4 
space-time cell 

which is the correct form. 
Note that both asymptotic limits will be correct only if exact arithmetic is used. 

In the thin limit the computation of EIQ = (As)-1 (&Q - &Q) will result in loss of 
significance due to cancellation of leading figures in the almost equal quantities 
IPg and 1,~. In the thick limit we must compute @J = &P) + &g,(P); since q1 
behaves like 0-l it may be small compared to qO and so fixed word length addition 
could result in I$’ = qo(P). This is completely wrong, for it is Dpql that enters into 
iYF/ar in the energy balance equation. 

7. We turn now to some of the details of solving the difference equations. 
Suppose we are proceeding from time t, to ts+l . Then I,, T” are given. 

(1) Guess a distribution Tsfl, say TS+I = Ts, and compute all coefficients. 
The transport diflFerence equations are explicit in I when there is no scattering. 

Let the radii be 
‘& < I”{,+1 *- ’ < l-i, 

and let the angles be 

(2) Solve the transport difference equations for p = -1. These are a special 
case of the equations already constructed, and are obtained from the equation 

aI ar - - - = a(B - I) cat ar 

using the mesh shown in Figure 7.1. Now, l,+l(i = i1 - 1, m = --M) is given, so 

FIG. 7.1 
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there are two unknowns in that cell, IS+I , Ii . TFhese are ~e~~~~~~~~ from (4.3) an 
the equation 

We then move in one cell and repeat the procedure. 
(3) Compute ls+I . A typical (Y, t, r-L> cell is shown in Figure 7.2. Start with ar: = 

-M, i = & - 1. Then for the cell shown, I,, Ii,, 1,,-1,,, are known. 1, will 
linear combination off,, , Ii , I,+,,, , so that (4.3) and the two auxiliary conditi 
determine .I,, , Ii , and Im+llz . Repeat this for i - 9, i - 2,,.., until &,(m = - 
has been found. Now advance m by one and repeat starting with i = il - I, 
a positive p is reached IP will involve IS+l , I;+1 , I,,,, . In that case Ii-, will be given, 
so start at the left end and sweep to the right. 

FIG. 7.2 

(4) Correct TS+I. The correction comes from the energy balance (5.4), w 
difference form is 

e consider three possible iterations. 

Iteration A (Newton’s Method). Choose a small number 8 an &$ne the matrix 
8’ by 

cc?& = S-‘[6,,,,(T,“rz’,..., T&t& + 6 ,...,) - &i+,,,(TB’“)qi 
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then. define F’s+1 by 

[a’(%+1 - Ts+l)]i+1,2 = --di+l,2(T~+l) 

and put I@ + T”+l and do (l), (2), (3). 
This of course is a very time consuming iteration. Each column of 8’ requires a 

full solution of the transport difference equations. Some saving of time is possible 
since not all al’s and p’s need to be computed for each column. In the current model 
without scattering not all the intensities need to be computed either, but with 
scattering present this saving is not possible. It has also been suggested to us that 
modified Newton’s Method might be effective, whetein 8’ is only re-computed 
intermittently. 

Iteration B. This iteration takes advantage-of the explicit T dependence of the 
inhomogeneous terms in (5.3). Let 

,W’, Q> = AU’> + BP(Q) 
Then 

2~. At C C (D) w, = 27rAtCC [y IO” + As-W, PI] w, (7.1) 
112. !7 112 9 

Now, if we are in the cell ri < r < ri+l , then we can write 

BP, Q) = aiY~2TE!&2 + bZ;‘E,,T%, + c~;~~2T~~~~2 (7.2) 

as follows: in the functions qk change variables from v to hv/kT. This brings out a 
factor T4 in q. and q2 , and a factor T3 in q1 and q3 , which cancels the T-3 in 6. 
Then write: 

(Tis=td4 = (T&)3 T%, 

and put the cubic factor into bi& . Each D has a difference of fourth powers of T. 
Write these as a difference of T’s times a cubic polynomial and put the cubits 
appropriately into ai:$z , etc. Let 

etc. 

k12 = 2~ At 1 C (As)-l ai:$2wm (7.3) 
m. * 

The iteration consists first of steps (l), (2), (3) with /3(P, Q) computed as written 
in (7.2). At the same time compute aiVl12 , bi+1j2 , ci+3/2 . Now write the energy 
balance as 

+ ci+3/2 T%2 - E?n(T;+1,2) + 2n At c c al--l Iogw, = 0 
mg As 

(7.4) 
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where 

This system is easily solved by Gaussian elimination. 
Iteration B has been observed to be convergent for both thick and thin probl 

but it is most rapid for large 0. Presumably, an acceleration procedure cou% 
used. 

~~~ru~~~~ C (Simple Substitution). Here we simply put 

the radiation terms being computed from (I), (2), (3). Nsw put @+I -+ Ts+l and 
repeat. 

In a previous publication [7] we have shown how this iteration can easily fail. 
As a final note in this section we should point out that the boundary cells require 

special treatment, since A T4 is called for at cell boundaries. The easiest thing to 
although not physically satisfactory, is to simply extrapolate T&. 

8. We have attempted to test the frequency discretization used in our metho 
on the following simple but nontrivial problem. A slab of finite thickness has radia- 
tion shining on it from one side. The absorption coeEcient (3 is a step f”unction in 
frequency, with two steps. We wish to compare the steady-state temperature distri- 
bution computed with two frequency intervals and one interval. 

The temperature T and frequency v are replaced by dimensionless variables B 
and u in such a way that the Planck function is now defined as 

B(B, u) = 84z43(e21 - 11-l 

The absorption has the following form 

The slab extends from x = 0 to x = 8. At x = 0 the incoming intensity is zero. 
The incoming intensity at x = 8 was obtained as follows. In [2], Carrier and Avretl; 
compute the steady-state temperature distribution in a se~“~n~~ite slab with t 
physical characteristics given above. Following a suggestion of A. §kurna~i~~ we 
assumed that e4 was linear from x = 8 to x = co with slope and intercept read-off 
from the curve given in [2], namely 

qx = 8) = 3.28 
de4 --&-(x = 8) = 26 

We then computed the incoming intensity at x = 8. 
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In Figure 8.1 we plot the results of Carrier and Avrett, a two frequency interval 
calculation and a one frequency interval calculation. In the latter case the cut-off 
frequency, VG was chosen so that 

1 1 
dv 

e-oAs dv z _ e-As + t e-lOOAs 

4 

3.5 

3.0 

2.5 

T 2.0 

1.5 

1.0 

.5 

LEGEND LEGEND 
- Carrier and Avrett - Carrier and Avrett 
---One frequency calculation ---One frequency calculation 
*D.*.- Two frequency calculation *D.*.- Two frequency calculation 

0 I 2 3 5 6 7 6 

FIG. 8.1. This a relatively severe test because of the large jump in o as a function of frequency, 
and one would not expect to obtain the complete temperature distribution very accurately using 
just one frequency interval. 
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